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1 Introduction
Modern space travel has been enabled
through the use of multi-stage rockets, where
a large booster stage puts a smaller upper
stage on a sub-orbital trajectory, and the up-
per stage lights a new set of engines that car-
ries it onward to orbit.

Due to some imagined computational limits
inherent to the CF312 computer lab, I do not
have the luxury of multiple stages to work
with. Instead, I am only able to simulate a
massive cannon with the ability to adjust: the
initial starting velocity, the mass of the can-
nonball, and the altitude it is fired from.

In the following, I will investigate how the re-
quired single-impulse velocity to reach a cir-
cular orbit changes with altitude, the ballis-
tic coefficient of the object, and the planetary
body’s gravitational parameter.

2 Methods
The analytical solution to the velocity re-
quired for a circular orbit, derived in ap-
pendix B, is

vcirc =

√
GM

R

This is valid only in the absence of atmo-
spheric drag. However, it provides a good
starting point to numerically computing the
critical velocity needed to reach a circular or-
bit in presence of drag.

Furthermore, again because of drag, a per-
fectly circular orbit is not possible without a
sustained impulse constantly working against
the force of drag. For the purposes of this
analysis, an orbit will be considered complete
when, after one full revolution around the
planet, the ending radius is within 1,000 me-
ters of the starting radius.

2.1 Equation of motion
For a body subject only to aerodynamic drag
and gravity from a massive body, the equa-
tion of motion (derived in Appendix A) is

r̈ = − µ

||r||3
r − 1

2m
CDAρ(r)|| ˙r||ṙ

where µ = GM is the planetary body’s grav-
itational parameter and ρ(r) is the altitude
dependent atmospheric density. For the body
in motion Cd is the coefficient of drag, and A
is the cross-sectional area.

To test the effects of drag, we can define a
ballistic coefficient

β =
m

CDA

so that the equation of motion becomes

r̈ = − µ

||r||3
r − 1

β
ρ(r)|| ˙r||ṙ

2.2 Testing altitude
To test the effects of altitude on the veloc-
ity required to reach a circular orbit, I ran
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Figure 1: The velocity required to raise an orbit by 1000 km decreases as the initial altitude
increases. Moving from 1,000 km to 2,000 km requires much more velocity change than moving
from 50,000 km to 51,000 km.

a series of 20 trajectories. Each successive
trajectory was spaced 1,000 km higher than
the previous, between altitudes of 100 km and
100,000 km.

For each altitude, the required velocity was
subtracted from the baseline altitude’s re-
quired velocity to determine the extra veloc-
ity needed to reach the next circular orbit.
I then plotted the altitude above surface vs.
the required ∆v to change orbits, seen in fig-
ure 1.

Atmospheric density was considered to be
variable, and was calculated as

ρ(r) = ρ0e
−r/H

where r is the altitude above Earth surface,
ρ0 = 1.225 kg/m3 is the atmospheric density
at sea level, and H = 8400 m is the scale
height for the atmosphere in meters.

The change in velocity for one altitude com-
pared to the previous was calculated as

∆v = valt − v100 km

2.3 Testing the ballistic coeffi-
cient

To analyze how the required velocity changes
with the ballistic coefficient β, next I set a
fixed altitude and tested a series of β values,
where

β =
m

CDA

Leaving the coefficient of drag and the cross-
sectional area the same, the mass was altered
to change the ballistic coefficient in order to
match the desired β.

The circular velocity in the absence of drag
was then subtracted from the velocity re-
quired for each β value to show how much
more velocity is needed.

∆v = vβ − vvac

A series of 6 β values were tested, each an
increment in order of magnitude, from β = 1
to β = 100, 000.

2



Figure 2: Comparing ballistic coefficients at an altitude of 100km shows significant decreases in
the amount of velocity change needed for high-drag objects. Once an object is sufficiently low-drag,
improving the ballistic coefficient yields negligible results.

2.4 Testing µ

The last parameter I tested was how the mass
of the planetary body affects the required ve-
locity. Similar to the previous two tests, I
fixed the altitude and tested a series of µ
values to observe how the required velocity
changes with planetary mass, where

µ = GM

with G as the gravitational constant, and M
as the mass of the planet to be modified.

A series of 10 µ values were tested, from
µ = 0.1 to µ = 1000. Each test was con-
ducted at 100km, in the absence of drag. The
only change to the parameters was the mass
of the body – the radius was not changed.

The change in velocity was calculated as

∆v = v100km, Earth µ − v100km, new µ

2.5 Brute-force sweep
For assessments of orbital trajectories for the
altitude test, a brute-force sweep was applied

to determine the minimum velocity needed
to complete an orbit. To calculate the veloc-
ity needed to reach circular orbit around a
planet, I began with computing the critical
velocity using the analytical expression.

Using the analytical value as a minimum
baseline for the necessary velocity, I first ran a
number of trajectories within a range of twice
the analytical expression. After one full rev-
olution, an orbit, the final radius was sub-
tracted from the initial radius.

A final radius less than the initial radius
means the object was in a suborbital trajec-
tory and lost too much energy due to drag.
Once the final radius for a trajectory is within
1,000 m of the initial radius, the orbit is con-
sidered complete and that velocity is taken as
the minimum required velocity for that orbit.

3 Results and Discussion
Planetary mass had the most significant im-
pact on the velocity required to attain a cir-
cular orbit. For Earth, a single magnitude of
increase in the mass increases the required ve-
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Figure 3: Changing the mass of the planetary body that an object is orbiting has a significant
affect on the extra velocity change needed, relative to Earth at 100 km. If Earth was just one
magnitude more massive, an object would require an extra 25,000 m/s of velocity to be in a circular
orbit at 100km.

locity for 100km orbit by almost 25,000 m/s
(figure 3).

To put this in perspective, the entirety of
an Apollo mission’s Saturn V rocket con-
tained only about 15,000 m/s of ∆v on the
launchpad. To simply reach low-Earth orbit,
a rocket launched from this "Super-Earth:
would need just under two Saturn V’s. Due
to the limitations of chemical propulsion,
achieving orbit quickly becomes impossible
on more massive planets than Earth (lucky
us, right?).

Next, changing the ballistic coefficient of an
object can also have a significant impact on
the velocity required to attain an orbit (figure
2). Even at 100km, where the atmospheric
density is around a million times less dense
than at sea level, the shape and mass of an
object can be the difference between staying
in orbit or crashing to Earth.

For a spacecraft that uses solar radiation for
propulsion like the LightSail 2, deploying the
boxing-ring sized solar sail in low-Earth orbit
would have disastrous consequences on its or-
bital trajectory.

Lastly, the effects of the starting altitude also
have a significant impact on the energy re-
quired to maintain an orbit. Raising an or-
bit from 1000 km to 2000 km requires an
extraordinary amount of ∆v compared to
what would be needed to raise the orbit from
50,000 km to 51,000 km.

In real-world applications, this is a well-
known physical consequence of orbital me-
chanics. In most rockets, around 85-95% of
the mass is contained in the first stage, the
part of the rocket that gets it up above the
atmosphere. The second stage, in compari-
son, has a fuel load much smaller than the
first stage, especially in low-Earth orbit ap-
plications.

This is why concepts such as orbital fuel de-
pots have huge potential to advance our ca-
pability for interplanetary travel. The first
stages of a rocket would boost the spacecraft
up to a higher low-Earth orbit, where it would
refuel at the orbital depot. From there, the
requirements to raise the orbit are much less
than getting to LEO, opening up many more
potential destinations.
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Appendix

A Derivation of the Equation of Motion
Starting from Newton’s second law

F = mr̈

Where r is the position vector. For an object in Earth atmosphere, the force of gravity is

Fg =
GMm

r2

and we can label the gravitational parameter of the planet as µ = GM . In vector form, the
force is

Fg =
µm

||r3||
r

For quadratic drag, the force on an object is

Fd =
1

2
ρ(r)CDA||v||v

where ρ(r) is the altitude-dependent atmospheric density, CD is the coefficient of drag, A is
the cross-sectional area of the object, and v is the velocity vector of the object.

The total force on the object is then

Ftotal = Fg + Fd

Ftotal =
µm

||r3||
r +

1

2
ρ(r)CDA||v||v

Dividing through by mass to yield the acceleration results in the equation of motion

r̈ =
µ

||r3||
r +

1

2m
ρ(r)CDA||v||v

B Derivation of the velocity required for a circular orbit
In a perfectly circular orbit, at all times the force of gravity balances out the centripetal
force,

GMm

r2
=

mv2

r

So the velocity required to be in such an orbit is simply

v =

√
GM

r
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