
Workflow Explanation Document
Cluster Membership Process

Sean McAdam
mcadams@wwu.edu

Contents

1 Introduction to the Membership Process 3
1.1 Purpose and Scope of this document . 3
1.2 Document Structure . 3

2 Prerequisites 4
2.1 Required Python Packages . 4
2.2 Required Data . 4

3 Workflow Overview 5

4 Finding the completeness limit 6
4.1 Make a histogram for a chosen magnitude 6
4.2 Apply a best fit line . 7
4.3 Find where the star count falls off . 9

5 Data Processing 10
5.1 Correcting for extinction . 10
5.2 Truncating to extinction-corrected completeness limit 11
5.3 Calculate Galactic ’l’ and ’b’ coordinates 11

6 Field Star Extrapolation 13
6.1 Mask out central stars . 13
6.2 Creating rows in ’b’ space . 14
6.3 Calculating row-wise density using shapely 15

7 Membership Calculations 19
7.1 Bin and count stars in 5D space . 19
7.2 Create cluster and field likelihood maps 21
7.3 Subtract and create voxel dataframe . 23
7.4 Calculate weighted probabilities . 25

7.4.1 CLM as a gatekeeper . 25
7.4.2 Applying both the FLM and CLM 26
7.4.3 Append probabilities to observed stars 26

7.5 Plotting . 27

8 Comparisons 31
8.1 Append membership info to new stars 31
8.2 Create markers for stars and plot . 31

1

Workflow Documentation CONTENTS

9 Conclusions (coming soon) 35
9.1 Expected results . 35
9.2 Known issues and areas to improve . 35

9.2.1 Overdensity within cluster bounding box 35
9.2.2 Using velocity dispersion as a motion threshold 35
9.2.3 Using local significance as a weight 35

2

Chapter 1

Introduction to the Membership
Process
The membership process takes a look at an observed set of data, and analyzes it to find
any overdensities that are consistent with predictions made by a simulated cluster model.

1.1 Purpose and Scope of this document
• Purpose: To detail the membership workflow so that users can replicate and extend

the work on this cluster and others.

• Scope: This guide details the required data and packages needed to run the process,
and the details and recommended workflow of the process.

1.2 Document Structure
• 2. Prerequisites – Lists the requirements packages and data.

• 3. Workflow Overview – Summarizes the entire process.

• 4-8. Detailed Steps – Goes step-by-step on how to use the notebooks.

• 9. Conclusion – Wraps up the guide, and lists areas to be improved

3

Chapter 2

Prerequisites
This process involves a lot of plotting and tweaking parameters, so it’s written in a series
of Jupyter notebooks. Because the membership calculation can take upwards of 45-60
minutes, the program cannot be run via Google Colab due to runtime restrictions.

2.1 Required Python Packages
• General functions: numpy, pandas

• Plotting: matplotlib, collections

• Math: shapely, scipy, math

• Astronomy specific: astropy , astroquery

2.2 Required Data
1. Observed data with the following values:

(a) RA (◦), DEC (◦), PMRA (mas/yr), PMDEC (mas/yr), Parallax (mas)
(b) Magnitudes (SDSS ’ugriz’ by default, but can work in other filter sets)
(c) Extinction estimates

2. Simulated cluster stars with same values as above

3. Isochrone based on cluster estimates

4. Supplementary dataset(s) to compare members with

4

Chapter 3

Workflow Overview

1. Finding the completeness limit: Corrects magnitudes for extinction, makes a
histogram of the observed stars for a chosen magnitude, and applies a best fit line
to find where the star count begins falling off.

2. Data processing: Truncates the observed data down to the extinction-corrected
completeness limit. Calculates and appends Galactic ’l’ and ’b’ coordinates to each
star in the observed dataset.

3. Field star extrapolation Generates a set of simulated field stars with data ex-
trapolated from the observed field star densities in ’l’ and ’b’ space.

4. Membership calculation counts stars in the 5D position-motion space, subtracts
simulated from observed to reveal overdensities, and calculates membership proba-
bilities

5. Comparisons Matches observed stars with stars from other datasets to compare
membership probabilities with members from established literature or other targets

5

Chapter 4

Finding the completeness limit
As we look further away from us, we’d expect to see more stars, but the light that reaches
us also becomes dimmer. The completeness limit tells us the magnitude where our sensor
begins hitting the limit of its resolution, and not every star is recorded in the data.

Packages:
General imports
import pandas as pd
import numpy as np

Plotting
import matplotlib.pyplot as plt

4.1 Make a histogram for a chosen magnitude
Decide which magnitude is being used to determine the completeness limit. I’ll be using
the DECam ’i’ magnitude here.

First, import the observed data, and drop any stars that are missing proper motion
or parallax values.
observed_df_raw = pd.read_csv(’C:/Users/smick/Desktop/Research/data/

NGC6569_gaia_withRVs.csv’)
observed_df_raw = observed_df_raw.dropna(subset =[’pmra’, ’pmdec’, ’

parallax ’])

Make a new entry for brightened and deredenned magnitudes by subtracting away the
extinction estimate for each star, making their apparent magnitudes as we expect to see
them without dust or other line-of-sight obstructions.
observed_df_raw[’imag_extcorr ’] = observed_df_raw[’imag’] -

observed_df_raw[’Ai’]

Now We’ll plot this extinction-corrected magnitude data to see where the counts of stars
begins dropping off. Make a series of logarithmic histograms with increasingly narrow
range to eyeball where around where the limit is.
full_hist = axs [0]. hist(observed_df_raw[’imag_extcorr ’], range =(10, 20)

, bins =100)
zoom1_hist = axs [1]. hist(observed_df_raw[’imag_extcorr ’], range =(15,

20), bins =100)
zoom2_hist = axs [2]. hist(observed_df_raw[’imag_extcorr ’], range =(16.5 ,

19.1) , bins =100)

6

Workflow Documentation CHAPTER 4. FINDING THE COMPLETENESS LIMIT

The slope looks constant between about 16.75 and 18.1, so that’s where we want to
calculate a best fit line.

4.2 Apply a best fit line
Create a new histogram for the range seen with a constant slope. Create new arrays for
the counts and for the edges of each bin.

slope_hist = np.histogram(observed_df_raw[’imag_extcorr ’],
range =(16.5 ,18.1) , bins =100)

counts = slope_hist [0]
edges = slope_hist [1]

Take the logarithm of the counts
1 log_counts=np.log(counts)

Loop through the bin edges, and calculate the center point of each bin. These will be the
points we use for the best fit line.
for i in range(len(log_counts)):

center = (edges[i]+ edges[i+1]) / 2
centers.append(center)

Calculate the coefficients for the best fit line
coefficients = np.polyfit(centers ,log_counts ,1)

Evaluate the coefficients at the center values to produce the line.
fit_line = np.polyval(coefficients , centers)

Plot the histogram info as a bar chart, and then plot the best fit line.
plt.bar(centers , log_counts , width=(edges [1] - edges [0]), label=’

Histogram␣data’)
plt.plot(centers , fit_line , label=’Best␣Fit␣Line’, color=’red’)

7

Workflow Documentation CHAPTER 4. FINDING THE COMPLETENESS LIMIT

Plot a quick histogram of the range
in which the best fit line is being
applied to make sure everything is
looking as we expect. If the best
fit line looks good, now we want
to extrapolate that line out to the
magnitudes where we start losing
stars.

We’ll extrapolate the best fit
line next, extending it out to
fainter magnitudes, and compare it
to the faint end of the histogram.
First, pull the slope and intercept
from the coefficient array.

slope = coefficients [0]
intercept = coefficients [1]

Next, create a range of magnitudes for the desired range. It’s important that the range
and number of bins here matches that of the faint histogram.
extrapolated_magnitudes = np.linspace (16.5 , 20.5, 400)

Then we’ll use those magnitudes, the slope of the best fit line, and the intercept from the
best fit line to create the line. Plot the line along with the histogram data as a bar chart.
extrapolated_log_counts = slope * extrapolated_magnitudes + intercept

8

Workflow Documentation CHAPTER 4. FINDING THE COMPLETENESS LIMIT

4.3 Find where the star count falls off
Now that we can see where the line deviates, let’s establish the exact magnitude where
we start seeing a 10% difference in actual stars compared to expected stars.

First, we’ll calculate the percentage difference between the extrapolated logarithmic
counts, and the counts from our faint histogram. If the two counts have mismatched
lengths, this will throw an error.
percentage_difference = 100 * (extrapolated_log_counts -

log_faint_counts) / extrapolated_log_counts

Now we need to loop through this array of percentage differences to find where we have
a 10 % difference.
for i, perc_diff in enumerate(percentage_difference):\

if perc_diff >= 10:
magnitude_with_10_percent_decrease = faint_centers[i]
break

print(f"The␣earliest␣magnitude␣with␣a␣10%␣decrease␣in␣stars:␣{
magnitude_with_10_percent_decrease}")

We can then visualize this point by looking at a plot of the percentage difference between
expected and observed.

9

Chapter 5

Data Processing
This notebook takes the observed stars, creates entries for the extinction-corrected mag-
nitudes, then truncates them to the extinction-corrected completeness limit found in the
previous section. We’ll then calculate Galactic ’l’ and ’b’ coordinates for each star in the
observed data.

Packages:
General imports
import pandas as pd
import numpy as np
Handling Gala .fits file
from astropy.io import fits
To convert coordinates to Galactic l and b
from astropy.coordinates import SkyCoord
import astropy.units as u

5.1 Correcting for extinction
Begin by importing the observed stars, and the cluster simulation.
observed_df_raw = pd.read_csv(’C:/Users/smick/Desktop/Research/data/

NGC6569_gaia_withRVs.csv’)
observed_df_raw = observed_df_raw.dropna(subset =[’pmra’, ’pmdec’, ’

parallax ’])

The cluster simulation will not be used in this notebook, but it’s helpful to take it from
a .fits to be used as a .csv for the rest of the notebook. We first have to open the file,
convert to an array, convert that array to little-endian format, and then to a dataframe.
with fits.open(’C:/ Users/smick/Desktop/Research/data/NGC6569_gala.fits’

) as hdul:
gala_data = hdul [1]. data

gala_array = np.array(gala_data)
gala_array = gala_array.byteswap ().view(gala_array.dtype.newbyteorder(’

<’))
gala_df = pd.DataFrame ({name: gala_array[name] for name in gala_array.

dtype.names })

10

Workflow Documentation CHAPTER 5. DATA PROCESSING

Now, take the observed star’s magnitudes and subtract away the estimate for extinc-
tion. Do this for any magnitude necessary.
observed_df_raw[’gmag_extcorr ’] = observed_df_raw[’gmag’] -

observed_df_raw[’Ag’]

5.2 Truncating to extinction-corrected completeness
limit

Now we simply need to limit the datasets to stars brighter than our completeness limit.
Check the numbers of stars in the observed dataset after truncation to get an idea of how
many are lost after the cut.
observed_df_cut = observed_df_raw [(observed_df_raw[’imag_extcorr ’] > 9)

& (observed_df_raw[’imag_extcorr ’] <= 18.63)]

5.3 Calculate Galactic ’l’ and ’b’ coordinates
Lastly, we’ll use astropy and the observed star’s RA,DEC coordinates to calculate new
Galactic ’l’ and ’b’ coordinates. Start by creating an SkyCoord object for the RA,DEC
coordinates.
coords = SkyCoord(ra=observed_df_cut[’radeg’].values ,

dec=observed_df_cut[’decdeg ’].values ,
unit=(u.degree ,u.degree),
frame=’icrs’)

Take this object, and create new entries in the dataframe for the Galactic ’l’ and ’b’
coordinates. For clusters near the galactic center, particularly with ranges around 0, it’s
important to wrap the values at 180 degrees.

observed_df_cut[’l’] = coords.galactic.l.wrap_at (180 * u.degree).
deg

observed_df_cut[’b’] = coords.galactic.b.deg

Do a quick side by side with the RA and DEC plot to make sure thngs look how we’d
expect.

11

Workflow Documentation CHAPTER 5. DATA PROCESSING

Finish by saving a copy of this dataframe, and the gala stars dataframe as .csv’s.
observed_df_cut.to_csv(’observed_stars_mag_limited.csv’, index=False)
gala_df.to_csv(’gala_stars.csv’)

12

Chapter 6

Field Star Extrapolation
For this field of view, we can see a gradient in ’l’ and ’b’ space that is more dense at
the cluster center, becoming less dense as ’b’ decreases. We can take advantage of this
gradient to simulate a field star population by looking at the density per row, and ran-
domizing the positions of the stars within that row while retaining their proper motions.

Packages:
General imports
import pandas as pd
import numpy as np
To convert coordinates to Galactic l and b (for simulating field

stars)
from astropy.coordinates import SkyCoord
import astropy.units as u
Plotting
import matplotlib.pyplot as plt
Math stuff
import math
from scipy.stats import norm
import shapely.geometry as geom
import shapely.ops as ops
from shapely import affinity

6.1 Mask out central stars
Start by defining the cluster center based on available literature, making sure the values
are in units of degrees.
ra_center_hms = (18, 13, 38.9)
dec_center_dms = (-31, 49, 35)
Convert to decimal degrees
ra_center = 15 * (ra_center_hms [0] + ra_center_hms [1] / 60 +

ra_center_hms [2] / 3600)
dec_center = dec_center_dms [0] - dec_center_dms [1] / 60 -

dec_center_dms [2] / 3600

Make a SkyCoord object for the cluster center next, and create new arrays for the values.
Wrap if needed.
cluster_coords = SkyCoord(ra=ra_center ,

dec=dec_center ,
unit=(u.degree ,u.degree),
frame=’icrs’)

13

Workflow Documentation CHAPTER 6. FIELD STAR EXTRAPOLATION

center_l = cluster_coords.galactic.l.wrap_at (180 * u.degree).deg
center_b = cluster_coords.galactic.b.deg

Establish a bounding box around that cluster center that encompasses as much of the
tidal radius as necessary. Define the half width, and the edges using the half width and
cluster center.
square_half_width = 0.05

cluster_l_min = center_l - square_half_width
cluster_l_max = center_l + square_half_width
cluster_b_min = center_b - square_half_width
cluster_b_max = center_b + square_half_width

Now we’ll use this box to create a mask that allows us to remove the stars at the dense
cluster center.
outside_cluster_mask = ~(

(observed_df_cut[’l’] >= cluster_l_min) & (observed_df_cut[’l’] <=
cluster_l_max) &

(observed_df_cut[’b’] >= cluster_b_min) & (observed_df_cut[’b’] <=
cluster_b_max)

)
observed_l_outside = observed_df_cut[’l’][outside_cluster_mask]
observed_b_outside = observed_df_cut[’b’][outside_cluster_mask]

6.2 Creating rows in ’b’ space
Now that we have a set of real field stars, we can use this to extrapolate from and create
a simulated set of field stars. Importantly, we can use this to simulate what the field
would look like in front of and behind the cluster center, using the information from the
field right around it.

We’ll use the minima and maxima of the observed data to create the number of rows
needed to meet the desired resolution, 0.001 degrees per row in this case. Start by find-
ing the mins and maxes for ’l’ and ’b’.
b_min , b_max = np.min(observed_df_cut[’b’]), np.max(observed_df_cut[’b’

])
l_min , l_max = np.min(observed_df_cut[’l’]), np.max(observed_df_cut[’l’

])

Next, we’ll calculate the radius of our field of view, using ’b’ so we can figure out how
many rows to bin by.
R = ((center_b - b_min) + (b_max - center_b)) / 2

Now set the number of rows needed to achieve the desired resolution
N-rows = 100

Define the edges, midpoints, and limits in ’l’
b_edges = np.linspace(b_min , b_max , N_rows +1)
b_mids = 0.5 * (b_edges [:-1] + b_edges [1:])
full_lmin = l_min
full_lmax = l_max

14

Workflow Documentation CHAPTER 6. FIELD STAR EXTRAPOLATION

6.3 Calculating row-wise density using shapely
Because we are working with rectangular rows in a circular field of view, we need to
account for the overlap at the edges of each row, where it exceeds the FOV and no stars
are found. At the same time, we need to exclude the area of the bounding box from the
calculations.

We’ll start by creating a shape the dimensions of the observed data’s field of view, and a
shape for the bounding box.
center = geom.Point(center_l , center_b)
circle_polygon = center.buffer(R, resolution =256)

cluster_box_polygon = geom.Polygon ([
(cluster_l_min , cluster_b_min),
(cluster_l_min , cluster_b_max),
(cluster_l_max , cluster_b_max),
(cluster_l_max , cluster_b_min),

])

Now, for each row, we need to loop through and determine the area of that row contained
both within the field of view, and outside of the cluster bounding box. We’ll do this by
using shapely’s intersection function to find the points of overlap between the various
shapes, and then the area.

At the same time, while we’re going row-by-row, we’ll use our masked dataset to de-
termine how many stars are contained within that row. Lastly, we use the area and the
counts to then determine the density of the field in that row.
for i in range(N_rows):

b_lower = b_edges[i] # pull ’b’ boundaries
b_upper = b_edges[i + 1]

Define the four points of each row rectangle
row_rect = geom.Polygon ([

(full_lmin , b_lower),
(full_lmin , b_upper),
(full_lmax , b_upper),
(full_lmax , b_lower),

])

Find the intersection of row and circle:
row_in_circle = row_rect.intersection(circle_polygon)

Calculate area of that intersection
row_area_in_circle = row_in_circle.area

Repeat to calculate portion of this row inside the circle AND
inside cluster bounding box. This is the area around cluster
center that we don’t want to count.

row_in_circle_and_box = row_in_circle.intersection(
cluster_box_polygon)

box_overlap_area = row_in_circle_and_box.area

Subtract away the cluster bounding box area
row_area_outside_box = row_area_in_circle - box_overlap_area

15

Workflow Documentation CHAPTER 6. FIELD STAR EXTRAPOLATION

row_areas[i] = row_area_outside_box # this is the area of the row
that we will use for density calculation

Define a mask for stars within this row
in_row = (

(observed_b_outside >= b_lower) & (observed_b_outside < b_upper
) &

((observed_l_outside - center_l)**2 + (observed_b_outside -
center_b)**2 <= R**2)

)
Count
row_counts[i] = np.sum(in_row)

Use counts and areas to calculate density per row
density_per_row = row_counts / row_areas

With all of this row-wise information, the next step is to generate a number of random
points within each row that meets number required for the density in that row. We’ll
first define a function that randomly samples a given number of points within a polygon.
def sample_points_in_polygon(polygon , n_points):

rng = np.random.default_rng ()
minx , miny , maxx , maxy = polygon.bounds

points = []
Keep generating until we have n_points inside ’polygon ’
while len(points) < n_points:

Generate random x and y coords within in bounding box
x = rng.uniform(minx , maxx)
y = rng.uniform(miny , maxy)
p = geom.Point(x, y) # define point as pair of x and y coords
if polygon.contains(p):

points.append ([x, y]) # add point if it falls within area
of row

return np.array(points)

Now we need to loop through each row again, calculating using row densities and the
stars within that row to make copies of the stars, and then use our function to define new
positions for those star copies.
for i in range(N_rows):

Define row boundaries in b
b_lower = b_edges[i]
b_upper = b_edges[i + 1]

Create the row rectangle
row_rect = geom.Polygon ([

(l_min , b_lower),
(l_min , b_upper),
(l_max , b_upper),
(l_max , b_lower),

])

Intersect with the circle polygon and calculate area
row_in_circle = row_rect.intersection(circle_polygon)
row_area_total = row_in_circle.area

16

Workflow Documentation CHAPTER 6. FIELD STAR EXTRAPOLATION

Retrieve the row’s star density
row_density = density_per_row[i]

Set number of stars needed to populate row
n_new = int(round(row_density * row_area_total))

Identify the stars outside the cluster bounding box in this row
in_row_field_mask = (

(observed_df_cut[’b’] >= b_lower) & (observed_df_cut[’b’] <
b_upper)

& ((observed_df_cut[’l’] - center_l)**2 + (observed_df_cut[’b’]
- center_b)**2 <= R**2)

& outside_cluster_mask
)
row_field_stars = observed_df_cut[in_row_field_mask]

Sample star properties from row_field_stars with replacement
rng = np.random.default_rng ()
chosen_indices = rng.integers(0, len(row_field_stars), size=n_new)

generate a list of random indices to be pulled
new_star_props = row_field_stars.iloc[chosen_indices].copy() #

create copies of the random stars

Generate n_new random positions throughout the entire row ,
including the cluster bounding box

new_lb = sample_points_in_polygon(row_in_circle , n_new)

Overwrite l and b of the new stars
new_star_props.loc[:, ’l’] = new_lb[:, 0]
new_star_props.loc[:, ’b’] = new_lb[:, 1]

Collect this row’s new stars
simulated_row_list.append(new_star_props)

We can now take these new synthetic stars, concatenate all the rows into a dataframe,
and calculate the RA and DEC coordinates.
simulated_df = pd.concat(simulated_row_list , ignore_index=True)

coords = SkyCoord(l=simulated_df[’l’]. values * u.degree ,
b=simulated_df[’b’]. values * u.degree ,
frame=’galactic ’)

icrs = coords.icrs # set ICRS coordinate frame
simulated_df[’radeg’] = icrs.ra.degree
simulated_df[’decdeg ’] = icrs.dec.degree

17

Workflow Documentation CHAPTER 6. FIELD STAR EXTRAPOLATION

Take a look at the new data, ensuring the simulated field has similar density in both
position and proper motion space to that of the original data, minus the presence of the
cluster.

18

Chapter 7

Membership Calculations
This notebook takes the observed and simulated datasets, and subtracts the field stars
from the full set of observed stars to reveal any overdensities in the residual array. This
residual array is then analyzed to measure the ratio of residual stars to the number of
observed stars originally in the voxel to create the residual ratio. The residual ratio is
then weighted against the cluster likehlihood map, to determine which overdensities line
up with cluster predictions.

Packages:
General imports
import pandas as pd
import numpy as np
Plotting
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.image as mpimg
import matplotlib.patches as patches
import matplotlib.gridspec as gridspec
import matplotlib.colors as mcolors
from matplotlib.patches import Circle
Math stuff
import math
from scipy.stats import norm
from scipy.stats import gaussian_kde
from scipy.ndimage import gaussian_filter

7.1 Bin and count stars in 5D space
Begin by importing the three datasets we have generated so far: the magnitude-truncated
observed stars, the simulated field stars, and the simulated cluster stars.

We’ll first create bins for the position-space. We want to span the tidal radius with
10 bins, so read in the tidal radius, making sure it’s in degrees. Divide the tidal radius
by 10 to get the resolution needed.
tidal_radius_as = 589.7 # (Pallanca , et al., 2023)
tidal_radius_deg = 589.7 / 3600
radec_resolution = tidal_radius_deg / 10

For proper motions, we want the bin size to be twice as large as the average uncer-
tainty. This ensures that a star’s error in its measurements will not push it over into its

19

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

neighboring bin. Calculate the mean uncertainty in the PMRA, PMDEC and Parallax
dimensions.
pmra_uncertainty = np.mean(observed_df_cut[’pmra_error ’])
pmdec_uncertainty = np.mean(observed_df_cut[’pmdec_error ’])
px_uncertainty = np.mean(observed_df_cut[’parallax_error ’])

We need to also set the limits of the binning range. Set the position limits to the minima
and maxima of the truncated observed data. For the proper motion limits, determine
the range of proper motion values based off the distribution seen in the selected field of
view. In this step, also determine the position centers for use in plotting later on.
dec_min , dec_max = np.min(observed_df_cut[’decdeg ’]), np.max(

observed_df_cut[’decdeg ’])
dec_center = (dec_min + dec_max) / 2

ra_min , ra_max = np.min(observed_df_cut[’radeg ’]),
np.max(observed_df_cut[’radeg’])

ra_center = (ra_min + ra_max) / 2

pmra_min , pmra_max = -12.5, 7.5
pmdec_min , pmdec_max = -15.0, 5.0
plx_min , plx_max = -5, 5

Now define the resolution for each bin using the values generated previously.
ra_resolution = radec_resolution
dec_resolution = radec_resolution
pmra_resolution = 2 * pmra_uncertainty
pmdec_resolution = 2 * pmdec_uncertainty
plx_resolution = 2 * px_uncertainty

Use the resolutions and limits to determine the number of bins needed. Do this for each
dimension.
n_ra_bins = int((ra_max - ra_min) / ra_resolution) + 1

We’ll now use the linspace command to take the minima, maxima, and number of bins
to generate the bins themselves. Again, do this for each dimension.
ra_bins = np.linspace(ra_min , ra_max , n_ra_bins)

20

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

To count the stars, we’ll now use the digitize function to assign indices that reflect
which bin a star’s values falls into. Because of how digitize works, we first need to create
a function that defines which bins our out-of-range values fall into.
def digitize_and_adjust(values , bins , out_of_range_low_bin ,

out_of_range_high_bin):
Assign indices
indices = np.digitize(values , bins , right=True)
Adjust indices for out -of-range values
adjusted_indices = []
for value , index in zip(values , indices):

if value < bins [0]:
adjusted_indices.append(out_of_range_low_bin)

elif value > bins [-1]:
adjusted_indices.append(out_of_range_high_bin)

elif value == bins [0]:
adjusted_indices.append (1) # because digitize places only

values equal to lower edge of the range in bin 0, we
need to tell it bin 1 instead so the star gets counted
properly

else:
adjusted_indices.append(index)

return np.array(adjusted_indices , dtype=int)

Now define the out-of-range bins as the the last and second-to-last bins. Do this for each
dimension.
ra_out_of_range_low_bin = len(ra_bins)
ra_out_of_range_high_bin = len(ra_bins) +1

Next, we’ll use the custom digitize function, along with the number of bins, and the
specified out-of-range bins to assign indices to each star’s values. We’ll do this for each
dimension, and for each dataset.
observed_ra_indices = digitize_and_adjust(observed_df_cut[’radeg ’],

ra_bins , ra_out_of_range_low_bin , ra_out_of_range_high_bin)

We’ll now use the indices to search through each unique combinations of bins, what we
call a "voxel", and count the number of stars that matches. Do this for each dataset
np.add.at(observed_voxel_counts , (observed_ra_indices ,

observed_dec_indices ,
observed_pmra_indices ,

observed_pmdec_indices ,
observed_plx_indices), 1)

We now have an array of voxel counts for each dataset that describes the density of stars
in the 5-D spatio-kinematic space.

7.2 Create cluster and field likelihood maps
We’ll now take our voxel densities, and create likelihood maps that describe the overall
distribution of stars in both of the simulations. We expect to see a wide distribution in
the field stars, but a highly-concentrated pack of voxels in the cluster data.

The field stars are simulated with the proper motions of real stars, and therefor have

21

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

the errors included by nature. The cluster model, on the other hand, will need to un-
dergo a Gaussian smoothing that simulates a spread of errors in each dimension. Start
by defining the bandwith to smooth by, in sigmas, for each dimension, and then apply
the Gaussian filter to the cluster counts.
sigma = [1, 1, 1, 1, 0.1]
gala_smoothed_counts = gaussian_filter(gala_voxel_counts , sigma=sigma)

We’ll then normalize these counts to create the cluster likelihood map.
clm = gala_smoothed_counts / np.max(gala_smoothed_counts)

Repeat the normalization for the field likelihood map.
flm = simulated_voxel_counts/ np.max(simulated_voxel_counts)

We can then plot these likelihood maps to get an idea of the distributions we’re looking
at. Collapse down the dimensions not needed to display the maps in 2D. Renormalize
them after summing, and plot.
clm_ra_dec =clm.sum(axis =(4,3,2))
clm_ra_dec /= clm_ra_dec.max()

22

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

7.3 Subtract and create voxel dataframe
We’ll now carry out the subtraction, and assemble a new dataframe that contains all
of the relevant voxel information. Somewhat surprisingly, the easy part is doing the
subtraction of voxel counts in the 5D space.
residuals = observed_voxel_counts - simulated_voxel_counts

Now ensure we are working with floats, and assign values to NaNs in case any get gener-
ated.
residuals = residuals.astype(float)
residuals[np.isnan(residuals)] = -np.inf

Next we need to flatten to a 1D array, and sort into descending order. Then, unravel
back into 5D voxels, yielding a tuple of arrays the same shape as the residuals. This will
allow us to later match the 5D coordinates to each entry.
flattened_residuals = residuals.flatten ()
sorted_indices = np.argsort(flattened_residuals)[::-1]
all_voxels = np.unravel_index(sorted_indices , residuals.shape)

Now we want to create a consolidated array of voxel indices so we can tell which voxel a
given star belongs to. Do this for each dataset.
observed_voxel_indices = np.stack ([observed_ra_indices ,

observed_dec_indices , observed_pmra_indices , observed_pmdec_indices ,
observed_plx_indices], axis =1)

Next we grab the object IDs from the relevant dataframes.
observed_n6569_oids = observed_df_cut[’n6569_oid ’]. values
simulated_n6569_oids = simulated_df[’n6569_oid ’]. values

And then find all the OIDs that exist in the observed, but not in the simulated.

residual_n6569_oids = np.setdiff1d(observed_n6569_oids ,
simulated_n6569_oids)

[[Note:
Because we are duplicating field stars to populate inside the cluster bounding box, we
are also duplicating their field star OIDs. The subtraction process inside this box will
always leave all the original stars, because by nature there are no OIDs from within the
box in the simulated date. Is this potentially why we’ll later see such a high density of 0
probability stars within the bounding box later on?
]]
Now mask to identify which rows in the observed data correspond to the residual OIDs.
residual_mask = np.isin(observed_n6569_oids , residual_n6569_oids)
residual_full_indices = np.where(residual_mask)[0]

Get the voxel indices for the residual stars
residual_voxel_indices = observed_voxel_indices[residual_full_indices]

Then convert each row of voxel indices into a typle that can be used as a dictionary key.
residual_voxel_tuples = [tuple(idx) for idx in residual_voxel_indices]

23

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

Now create a dataframe for the residual stars that contains the voxel index, the OID,
and the star’s indices from the observed data.
residual_stars_df = pd.DataFrame ({

’voxel_idx ’: residual_voxel_tuples ,
’n6569_oid ’: residual_n6569_oids ,
’full_index ’: residual_full_indices

})

Group the residual stars by their indices for easier sorting.
grouped_residual_stars = residual_stars_df.groupby(’voxel_idx ’)

Now we need to define a helper function that looks at a bin, and returns the edges of
that bin.
def bin_edges(bins , index):

if index <= 0 or index >= len(bins):
return (np.nan , np.nan)

else:
return (bins[index - 1], bins[index])

And then build the dictionaries for fast lookups within the voxel sorting loop. This step
allows the sorting loop to quickly grab the star indices in a given voxel. Do this for both
the observed and the simulated stars.
observed_dict = defaultdict(list)
for i, idx in enumerate(observed_voxel_indices):

observed_dict[tuple(idx)]. append(i)

Now we’ll move into the loop that will go through each voxel in the flattened residual
array, and return a dataframe that contains the relevant voxel information and OIDs for
matching stars.

We’ll skip any of the voxels that are empty, which we’ve assigned -infinity values to,
and iterate over the residuals in descending order. Use zip(*all_voxels) and
flattened_residuals[sorted_indices] to pair each voxel index with its corresponding resid-
ual value.
for voxel_idx , residual_value in zip(zip(* all_voxels),

flattened_residuals[sorted_indices]):
if residual_value == -np.inf:

continue

Now use the helper function to convert the voxel indix into the actual coordinate ranges.
ra_range = bin_edges(ra_bins , voxel_idx [0])
dec_range = bin_edges(dec_bins , voxel_idx [1])
pmra_range = bin_edges(pmra_bins , voxel_idx [2])
pmdec_range = bin_edges(pmdec_bins , voxel_idx [3])
plx_range = bin_edges(plx_bins , voxel_idx [4])

Turn the voxel index array into a typle so it can be used as a dictionary.
voxel_tuple = tuple(voxel_idx)

Check if the voxel has any residual stars, skip if not.

24

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

if voxel_tuple in grouped_residual_stars.groups:
residual_stars = grouped_residual_stars.get_group(voxel_tuple)
residual_star_count = len(residual_stars)

else:
residual_star_count = 0

if residual_star_count == 0:
continue

Find the row indices of all observed and simulated stars in this voxel using the dictionary.
observed_matching_indices = observed_dict.get(voxel_tuple , [])
simulated_matching_indices = simulated_dict.get(voxel_tuple , [])

Append all of the relevant information and return the dataframe.
voxel_info_list.append ({

’RA␣Range’: ra_range ,
’DEC␣Range’: dec_range ,
’PMRA␣Range’: pmra_range ,
’PMDEC␣Range’: pmdec_range ,
’Parallax␣Range’: plx_range ,
’Residual␣Count’: residual_value ,
’CLM␣Density ’: clm[voxel_idx],
’FLM␣Density ’: flm[voxel_idx],
’Observed␣Star␣Count’: len(observed_matching_indices),
’Simulated␣Star␣Count’: len(simulated_matching_indices),
’Residual␣Star␣Indices ’: residual_stars[’full_index ’].values ,
’Residual␣Star␣IDs’: residual_stars[’n6569_oid ’]. tolist ()

})

voxel_df = pd.DataFrame(voxel_info_list)

7.4 Calculate weighted probabilities
Use the residual and observed star counts from the new voxel dataframe to calculate a
per-voxel residual ratio. This tells us the probability of selecting a star that belongs to
the residual dataset from a given voxel. Replace any NaNs with 0s.
voxel_df[’Residual␣Ratio ’] = voxel_df[’Residual␣Count’] / voxel_df[’

Observed␣Star␣Count ’]
voxel_df[’Residual␣Ratio ’] = voxel_df[’Residual␣Ratio’]. fillna (0)

We now want to look at this value and compare it to the cluster and field likelihood maps.
There are two ways of doing this, and we can compare the results later on.

7.4.1 CLM as a gatekeeper
The first way to go about this is to use the cluster likelihood map as a simple gatekeeper,
that says "keep the residual value for this voxel if the cluster model predicts there to also
be stars there."

This function creates a Gatekeeper Residual entry, which is just a copy of the resid-
ual ratio value anywhere the CLM density is greater than a certain threshold.

25

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

voxel_df[’Gatekeeper␣Residual ’] = np.where(
voxel_df[’CLM␣Density ’] > 0.25,
voxel_df[’Residual␣Ratio ’],
0

)

7.4.2 Applying both the FLM and CLM
If we want to also apply the field likelihood map, we can use Bayesian inference to combine
the probabilities.

Pw = R × CLM

R × CLM + FLM × (1 − CLM)
For example, consider a voxel that has high densities in both the CLM and FLM. For
a residual ratio of 1, a CLM density of 0.75, and a field density of 0.75, the weighted
probability becomes

Pw = 1 × 0.75
1 × 0.75 + 0.75 × (1 − 0.75) = 0.8

Calculate this probability, and apply it to any stars where we have a residual ratio above
0.5. That covers any voxel where there were twice as many stars in the observed dataset
as were in the simulated.
voxel_df[’Gala␣Weighted␣Residual ’] = np.where(

voxel_df[’Residual␣Ratio ’] >= 0.50,
res_bayesian_probability ,
voxel_df[’Gala␣Weighted␣Residual ’]

)

7.4.3 Append probabilities to observed stars
Now that we have our different measures of probability, we can append those values to
the real stars, along with any relevant voxel information.

First, pull OIDs and values from the observed stars
observed_stars_info = observed_df_cut.set_index(’n6569_oid ’)[[’radeg ’,

’decdeg ’, ’pmra’, ’pmdec’, ’parallax ’, ’rmag_extcorr ’, ’gmag_extcorr
’,’zmag_extcorr ’, ’imag_extcorr ’]]

Create an empty list to store the entries.
observed_probs = []

Begin looping through each voxel, pulling the voxel index values.
for _, voxel_row in voxel_df.iterrows ():

voxel_idx = voxel_row [[’RA␣Range ’, ’DEC␣Range ’, ’PMRA␣Range ’, ’
PMDEC␣Range ’, ’Parallax␣Range ’]]. values

Specify the variables from the residual voxel dataframe to be included.

26

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

residual_ratio = voxel_row[’Residual␣Ratio’]
flm_density = voxel_row[’FLM␣Density ’]
gala_weighted_residual = voxel_row[’Gala␣Weighted␣Residual ’]
gatekeeper_residual = voxel_row[’Gatekeeper␣Residual ’]
clm_density = voxel_row[’CLM␣Density ’]
residual_matching_indices = voxel_row[’Residual␣Star␣Indices ’]

Skip any empty voxels.
if residual_matching_indices.size == 0:

continue

Append information from the observed stars and the residual voxel dataframe to the new
observed probabilities list, and convert to a dataframe.

matching_observed_stars = observed_stars_info.iloc[
residual_matching_indices]

for oid , star_data in matching_observed_stars.iterrows ():
observed_probs.append ({

’n6569_oid ’: oid ,
’radeg’: star_data[’radeg’],
’decdeg ’: star_data[’decdeg ’],
’pmra’: star_data[’pmra’],
’pmdec’: star_data[’pmdec’],
’Parallax ’: star_data[’parallax ’],
’gmag_extcorr ’: star_data[’gmag_extcorr ’],
’rmag_extcorr ’: star_data[’rmag_extcorr ’],
’imag_extcorr ’: star_data[’imag_extcorr ’],
’zmag_extcorr ’: star_data[’zmag_extcorr ’],
’Residual_Ratio ’: residual_ratio ,
’CLM␣Density ’: clm_density ,
’FLM␣Density ’: flm_density ,
’Gala␣Weighted␣Residual ’: gala_weighted_residual ,
’Gatekeeper␣Residual ’: gatekeeper_residual ,
’Voxel␣Index’: voxel_idx

})

Convert the results to a DataFrame
observed_probs_df = pd.DataFrame(observed_probs)

7.5 Plotting
Now that we have our probabilities assigned to real stars, we can plot the stars in the
various spaces to see how the memberships have been assigned.

Separate the stars into groups of low, med-high, and high probabilities for visualization.
Do this for both types of probabilities for comparison.
low_probs = observed_probs_df[observed_probs_df[’Gala␣Weighted␣Residual

’] < 0.5]
med_and_high_probs = observed_probs_df[observed_probs_df[’Gala␣Weighted

␣Residual ’] >= 0.5]
high_probs = observed_probs_df[observed_probs_df[’Gala␣Weighted␣

Residual ’] >= 0.85]

27

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

First, we want to plot the distributions of the CLM, FLM, Residual Ratio, and Gala
Weighted Residual. We should expect a relatively Gaussian spread in the residual ratio,
though there will almost always be a vast majority of ratio 1 voxels. This is due to the
fineness in the binning, and can be reduced by making the bin sizes coarser to reduce the
number of single star voxels. Too coarse,though, and we begin losing any meaning in the
results because all the stars will live in the same few voxels.

We know the Bayesian did its job if we see the number of 1 values reduced by orders
of magnitude like above. This process can be repeated, swapping out the Gala Weighted
Residual with the Gatekeeper Residual in the lower right panel.
It’s helpful to also get a position and motion representation of the simulated, observed,
residual and cluster prediction datasets.

28

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

Next, we can take a look at the stars in position and motion space, and color-code them
by their probabilities. Collapse the arrays down in the same way as we did previously, and
make a series of position and motion plots that filter by probabilities.Overlay the cluster
model stars to see where the CLM will be nonzero. The overdensity of 0 probabilities
inside the cluster bounding box can be seen in the top left.

We can also view the high probability stars in a color-magnitude diagram, and com-

29

Workflow Documentation CHAPTER 7. MEMBERSHIP CALCULATIONS

pare them against an isochrone generated from the cluster parameters. We’ll need the
distance modulus here to calculate the apparent magnitudes. Calculate the relevant
colors, too.
iso_mu = mist_iso[’SDSS_u ’] + distmod
iso_mg = mist_iso[’SDSS_g ’] + distmod
iso_u_g = mist_iso[’SDSS_u ’] - mist_iso[’SDSS_g ’]

Include the completeness limit as a
horizontal line to show where we’re
cutting the data off. The stars with
high probabilities should follow
closely to the isochrone if they are
indeed members of the cluster.

In the case shown here, NGC
6569 is expected to have two
distinct age populations, and we
might be seeing the presence of the
horizontal red giant branch of the
secondary population.

Repeat the plotting process
for the Gatekeeper residual to
inspect how the two measures of
probability compare to one another.

Export the results to a new
.csv so we can take a look at how
the memberships get assigned to
stars from other datasets.

30

Chapter 8

Comparisons
We can now use the probabilities that have been assigned to the observed stars, and use
their object IDs (oID) to match them with stars from other datasets.

8.1 Append membership info to new stars
Import the probabilities that we generated in the last notebook, the set of cluster stars
used to create the CLM, and the datasets we want to compare with. Make sure the
column naming is what we’d expect.

Merge the observed probability dataframe with the new datasets, using the oID to match
on.
Johnson_crossmatches = Johnson_matches.merge(observed_probs_df [[’

n6569_oid ’, ’Gatekeeper␣Residual ’]], on=’n6569_oid ’, how=’left’)

In case there are any stars that aren’t assigned a membership probability, replace any
NaNs with 0s.
Johnson_crossmatches[’Gatekeeper␣Residual ’] = Johnson_crossmatches[’

Gatekeeper␣Residual ’]. fillna (0)

8.2 Create markers for stars and plot
We need to understand why some stars are assigned probabilities and others aren’t, so
we’ll create a series of markers that identifies if they are spatially or kinematically close
to the cluster, both, or neither.

Begin by defining the cluster center in position and motion space, as well as a threshold
within which we consider to be "close to the cluster". Define the core and tidal radius.
ra_center = 15 * (ra_center_hms [0] + ra_center_hms [1] / 60 +

ra_center_hms [2] / 3600)
dec_center = dec_center_dms [0] - dec_center_dms [1] / 60 -

dec_center_dms [2] / 3600
pmra_center = -4.125 # (PM data from Vasiliev & Baumgardt , 2021)
pmdec_center = -7.259
pm_threshold = 0.5
core_radius_deg = 19.9 / 3600
tidal_radius_deg = 589.7 / 3600

31

Workflow Documentation CHAPTER 8. COMPARISONS

Next we’ll define a function that takes the position and motion parameters, and checks
them against the desired spatial and kinematic ranges.
def assign_membership_markers(

df,
ra_col ,
dec_col ,
pmra_col ,
pmdec_col ,
ra_center ,
dec_center ,
pmra_center ,
pmdec_center ,
pm_threshold ,
tidal_radius

):

Calculate a radial distance from the cluster center.
d_ra = (df[ra_col] - ra_center) * np.cos(np.deg2rad(dec_center))
d_dec = df[dec_col] - dec_center
radius = np.sqrt(d_ra **2 + d_dec **2)

Create a mask for stars within the chosen radius.
spatial_flag =(radius <= tidal_radius_deg)

Create another mask for stars within the proper motion range.
pm_flag = (

(df[pmra_col] >= pmra_center - pm_threshold) &
(df[pmra_col] <= pmra_center + pm_threshold) &
(df[pmdec_col] >= pmdec_center - pm_threshold) &
(df[pmdec_col] <= pmdec_center + pm_threshold)

)

Set the conditions as inside one or the other, inside both, and inside neither.
conditions = [

(spatial_flag & ~pm_flag), # Spatial only
(~ spatial_flag & pm_flag), # PM only
(spatial_flag & pm_flag), # Both
(~ spatial_flag & ~pm_flag) # Neither

]

Assign labels for the various flags.
markers = [’Only␣in␣tidal␣radius ’, ’Only␣in␣PM␣range ’, ’In␣both’, ’

In␣neither ’]

Lastly, assign the flags with labels to the stars and return the results.
df[’membership_marker ’] = np.select(conditions , markers , default=’

In␣neither ’)

return df

32

Workflow Documentation CHAPTER 8. COMPARISONS

Use the function to assign the markers to each dataset as needed.
Johnson_crossmatches = assign_membership_markers(

df=Johnson_crossmatches ,
ra_col=’radeg’,
dec_col=’decdeg ’,
pmra_col=’pmra’,
pmdec_col=’pmdec ’,
ra_center=ra_center ,
dec_center=dec_center ,
pmra_center=pmra_center ,
pmdec_center=pmdec_center ,
pm_threshold=pm_threshold ,
tidal_radius=tidal_radius_deg

)

For plotting, we’ll create a dictionary for the labels and symbols we want to use.
markers_dict = {

’Only␣in␣tidal␣radius ’: ’o’, # circle
’Only␣in␣PM␣range’: ’^’, # triangle
’In␣both’: ’*’, # star
’In␣neither ’: ’s’ # square

}

We want to add circles to the position plots for the core and tidal radii, and a rectangle
to the motion plots to indicate the threshold used for sorting.
core_radius = Circle(

(ra_center , dec_center), core_radius_deg ,
color=’red’, fill=False , linestyle=’--’, linewidth =1.5,
label=’Cluster␣Radius ’

)
box = Rectangle(

(lower_left_x , lower_left_y), box_size , box_size ,
fill=False ,
edgecolor=’red’,
linewidth =2,
linestyle=’--’,
label=’PM␣Threshold ’

)

And we’ll need to assign the categories to the stars,then plot.
for cat , marker in markers_dict.items ():

Filter the subset
subset = Johnson_crossmatches[Johnson_crossmatches[’

membership_marker ’] == cat]
sc1 = ax1.scatter(

subset[’radeg’],
subset[’decdeg ’],
c=subset[’Gatekeeper␣Residual ’], # or your membership

probability column
cmap=cmap ,
norm=norm ,
marker=marker ,
s=50,
alpha=1,
label=cat

)

33

Workflow Documentation CHAPTER 8. COMPARISONS

Plot the cluster model stars in to show where the probabilities align with the CLM.

In this view, we can take a look at which stars are being assigned membership prob-
abilities relative to their proximity to the cluster in position and motion space. We can
also see where memberships are rejected due to the absence of cluster model stars in that
area.

34

Chapter 9

Conclusions (coming soon)

9.1 Expected results

9.2 Known issues and areas to improve

9.2.1 Overdensity within cluster bounding box

9.2.2 Using velocity dispersion as a motion threshold

9.2.3 Using local significance as a weight

35

	Introduction to the Membership Process
	Purpose and Scope of this document
	Document Structure

	Prerequisites
	Required Python Packages
	Required Data

	Workflow Overview
	Finding the completeness limit
	Make a histogram for a chosen magnitude
	Apply a best fit line
	Find where the star count falls off

	Data Processing
	Correcting for extinction
	Truncating to extinction-corrected completeness limit
	Calculate Galactic 'l' and 'b' coordinates

	Field Star Extrapolation
	Mask out central stars
	Creating rows in 'b' space
	Calculating row-wise density using shapely

	Membership Calculations
	Bin and count stars in 5D space
	Create cluster and field likelihood maps
	Subtract and create voxel dataframe
	Calculate weighted probabilities
	CLM as a gatekeeper
	Applying both the FLM and CLM
	Append probabilities to observed stars

	Plotting

	Comparisons
	Append membership info to new stars
	Create markers for stars and plot

	Conclusions (coming soon)
	Expected results
	Known issues and areas to improve
	Overdensity within cluster bounding box
	Using velocity dispersion as a motion threshold
	Using local significance as a weight

